
John M. May and Bronis R. de Supinski
Center for Applied Scientific Computing

Experiences with Mixed MPI and

Threaded Programming Models

CASC

What is the best programming model for
shared memory clusters?

l How do different
programming models affect
application performance?

l How do hardware
characteristics affect
application performance?

l How much work does it take
to move to a new
programming model?

CPUs bus shared memory

CASC

Outline

l Hardware environment

l Mixed programming models

l Three mixed-model codes
—Ares: regular-grid hydrodynamics
—Ardra: neutral particle transport
—JEEP: molecular dynamics

l Observations on mixed models

CASC

 Hardware environment

l IBM “Tech Refresh” system
—168 four-way SMP nodes
—Message passing can use “User Space” or “IP”
—No global shared memory

l DEC cluster
—Typical configuration has 80 CPUs divided (not

equally) among 8 nodes
—Message passing can span all CPUs, although

most runs are not over the full system (capacity,
not capability)

CASC

Programming models: Pure MPI

l Each CPU runs a separate MPI job

l Requires no changes for existing MPI codes

l Does not take advantage of shared memory

l Message passing is theoretically less efficient than
shared memory

l Until recently, IBM didn’t support multiple user-space
tasks on the same node

CASC

Programming models: Threads

l Explicit thread libraries (pthreads)
—Maximum control
—Most difficult threading model

l Parallelization directives
—Examples include OpenMP and IBM SMP
— Implies loop-level parallelization
—Works best when loop iterations are large and

independent

l Threaded libraries
— If code spends substantial time in standard

function (e.g. Fourier transform), can look for
threaded version

—Easiest to use
—Performance depends on time spent in library

CASC

Mixed programming models

l Use MPI for internode communication and a threaded
model within nodes

l Requires a thread-safe MPI library
—Not all threads may communicate, but MPI may

call non-thread-safe functions (e.g. malloc)

l Allows (one hopes) efficient use of shared memory

l Other models for multilevel parallelism exist (e.g.
KeLP) but they aren’t used in our codes

l Three examples from LLNL: Ares, Ardra, JEEP

CASC

Ares: Regular grid hydrodynamics

l Domain overloading
—Decomposes problem space into more domains

than processes
— Improves load balance and cache use
—Makes threading straightforward
—One thread handles all MPI communication

l Initial threading used pthreads
—Thread pool kept threads alive between phases
—Complicated to program

l Switched to parallelization directives when available
—Much easier to manage
—No significant performance difference

CASC

Ardra: Neutral particle transport

l Block-structured mesh

l About half the time spent in a “sweep” phase

l Programming model is data-driven for both message
passing and threads

l Explicit threads scan work queue; compute each data
point when its input dependencies are satisfied

l Initially used a thread pool; now spawn threads as
needed

l Code is not well-suited for loop-based parallelism

CASC

JEEP: Molecular dynamics

l Computes molecular interactions at quantum-
mechanical level

l Solves Schrödinger equation at each time step

l Message passing code is parallelized over electronic
states

l Each state requires Fourier transform computations

l Fourier transform done with IBM’s multithreaded
ESSL code

l Easy way to get multithreading; speedup is limited

CASC

Conclusions

DirectivesPthreads Threaded libraries

Ease of use

Opportunities for parallelism

l For loop-level parallelism, it’s better to parallelize one outer loop
than many inner loops, if possible

l Directive-based compilers are maturing

l No hard data yet on performance of threads vs. pure MPI; initial
results are mixed

CASC

Acknowledgements

l Thanks to code developers
—Ares: Brian Pudliner
—Ardra: Ulf Hanebutte
—JEEP: François Gygi

l Work performed under the auspices of the U. S.
Department of Energy by Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48,
UCRL-MI-133179

